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Abstract. The effect of mixture lengths of vehicles on the asymmetric exclusion model is studied using
numerical simulations for both open and periodic boundaries in deterministic parallel dynamics. The
vehicles are filed according to their length, the small cars type 1 occupy one cell whereas the big ones
type 2 takes two. In the case of open boundaries two cases are presented. The first case corresponds to
a chain with two entries where densities are calculated as a function of the injecting rates α1 and α2 of
vehicles type 1 and type 2 respectively, and the phase diagram (α1, α2) is presented for a fixed value of
the extracting rate β. In this situation the first order transition from low to high density phases occurs at
α1 + α2 = β and disappears for α2 > β. The second case corresponds to a chain with one entry, where α
is the injecting rate of vehicles independent of their nature. Type 2 are injected with the conditional
probability αα2, where 0 ≤ α2 = nα ≤ α and n is the concentration of type 2. Densities are calculated as
a function of the injecting rates α, and the phase diagrams (α,β) are established for different values of n.
In this situation the gap which is a characteristic of the first order transition vanishes with increasing α
for n �= 0. However, the first order transition between high and low densities exhibit an end point above
which the global density undergoes a continuous passage. The end point coordinate depends strongly on
the value of n. In the periodic boundaries case, the presence of vehicles type 2 in the chain leads to a
modification in the fundamental diagram (current, density). Indeed, the maximal current value decreases
with increasing the concentration of vehicles type 2, and occurs at higher values of the global density.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Cn Order-disorder transforma-
tions; statistical mechanics of model systems – 75.30.Kz Magnetic phase boundaries (including magnetic
transitions, metamagnetism, etc.) – 82.20.Wt Computational modeling; simulation

1 Introduction

Without doubt, an efficient transportation system is es-
sential for the functioning and success of modern indus-
trialized societies. But the days when freeways were free
are over. The increasing problems of roadway traffic raise
the following questions: Is it still affordable and publicly
acceptable to expand the infrastructure? Will drivers still
buy cars when streets are effectively turned into parking
lots? Automobile companies worried about their future
market, have spent considerable amounts of money for re-
search on traffic flow and on how the available infrastruc-
ture could be used more efficiently by new technologies. In-
deed, traffic flow is an interesting field of inter-disciplinary
research; it has attracted the interest of many researchers
from different disciplines. Like mathematicians, chemists,
and engineers, physicists have addressed the problems of
traffic flow many years ago and they have been trying to
understand the fundamental principals governing the flow
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of vehicular traffic using theoretical approaches based on
concepts and techniques of statistical physics [1–3]. The
approach of a physicist is usually quite different from that
of a traffic engineer. A physicist tries to develop a model
of the traffic by incorporating only the most essential in-
gredients which are absolutely necessary to describe the
general features of typical real traffic. There are two dif-
ferent ways for modelling traffic: The macroscopic mod-
els which are based on fluid-dynamical description and
the microscopic ones where attention is explicitly focused
on individual vehicles which are represented by particles.
The interaction is determined by the way the vehicles in-
fluence each others movement. In other words in the mi-
croscopic theories traffic flow is considered as a system
of interacting particles driven far from equilibrium. Thus,
it offers the possibility to study various fundamental as-
pects of the dynamics of truly non equilibrium systems
which are of current interest in statistical physics [4,5].
Within the conceptual framework of the microscopic ap-
proach, the particle hopping models describe traffic in



112 The European Physical Journal B

terms of stochastic dynamics of individual vehicles which
are usually formulated using the language of cellular au-
tomata (CA) [6]. In general, CA are an idealization of
physical systems in which both space and time are as-
sumed to be discrete and each of the interacting units can
have only a finite number of discrete states, thus in CA
models of traffic the position, speed, acceleration as well
as time are treated as discrete variables and the lane is
represented by a one-dimensional lattice, each site rep-
resents a cell which can be either empty or occupied by
at most one vehicle at a given instant of time. The com-
putational efficiency of CA is the main advantage of this
approach. Much effort has been concentrated on stochas-
tic CA models of traffic flow first proposed by Nagel and
Schreckenberg [7] and subsequently studied by other au-
thors using a variety of techniques [8,9]. The stochastic
dynamics of interacting particles have been studied in the
mathematical and physical literature [10]. In the physical
case, driven lattice gases with hard core repulsion provide
models for diffusion of particles through narrow pores and
for hopping conductivity [11], and belong to the general
class of non-equilibrium models which includes driven dif-
fusing systems [12,13]. They are closely linked to growth
process [14,15], and can also be formulated as traffic jam
or queuing problems [16]. The fully asymmetric exclusion
model (FAEM) which is also described in literature as
the Totally asymmetric exclusion process (TASEP) corre-
sponds to the case where particles hop only in one direc-
tion. This model can be divided into four classes according
to the dynamics (sequential or parallel) and the choice of
boundary conditions (open or periodic). In the sequen-
tial dynamics in which each particle has a probability ∆t
(time interval) of jumping to its right-hand neighbour if
this neighbouring site is empty, has been solved exactly in
one dimension with open boundary conditions [17,18]. Re-
cently Shaw et al. [19] studied the protein synthesis using
the TASEP with extended objects i.e. a system with par-
ticles of length l > 1 using numerical and analytical tools
for random sequential updating. The stochastic parallel
update of the asymmetric exclusion model was studied
using Monte-Carlo simulations [20], however its determin-
istic case i.e. particles moving forward with probability
q = 1, was studied analytically by Tilstra and Ernst [21].
The aim of this paper is to study the effect of mixture
lengths l = 1 and l = 2 of vehicles on the FAEM in the
case of deterministic parallel dynamics in both open and
periodic boundary conditions using numerical simulations.
This paper is organized as follows; Section 2 is devoted to
explain the model with three cases i.e. open boundaries
with two entries, open boundaries with one entry and pe-
riodic boundaries. In the third section we present the main
results obtained in these cases with a critical discussion.
Section 4 is devoted to a conclusion.

2 Model

We consider a chain of N sites in which the vehicles are
filed according to their length. However, vehicles of type 1
means short cars (l = 1) which occupy one site and type 2

Fig. 1. Example of configurations obtained after three steps
for system size L = 8 where both type 1 and type 2 move with
Vmax = 1.

the long vehicles (l = 2) occupy two sites. Type 2 moves
by one site at each time step even if two sites ahead are
empty, the same applies to type 1. Hence Figure 1 displays
an example of some configurations.

2.1 Open boundaries

2.1.1 The case of two entries

In this case, type 1 are injected in the first site (the first
entry) with an injecting rate α1, while type 2 are injected
in the third site (second entry) with an injecting rate α2, if
these entries are empty. However, in order to avoid the on-
ramp at the moment when type 2 are injected, we should
take into account the following conditions.

The second site must be, also, empty, to not hinder the
movement of type 1 present in the first site at the next time
step, because type 2 enters the road on two time steps due
to its length. Thus, the distance between the two entries
should be at least equal to 1.

2.1.2 The case of one entry

For both practical and theoretical reasons, some times dif-
ferent boundary conditions are used. Imagine a situation
where a multilane road, containing different kinds of vehi-
cles (car and trucks), is reduced to one lane due, for exam-
ple, to a road construction. Such a situation can be mod-
elled by using our model. In this case the multilane part of
the road acts as a particle reservoir (both types), and the
one part lane is represented by a chain with N sites. Here
the vehicles will be injected at the same entry depending
on the injecting rate α of vehicles and the concentration n
of vehicles type 2. In this case, numerical simulations are
limited only when 0 ≤ n ≤ 0.5, since in the road we have
a few type 2 vehicles in comparison to type 1 (we assume
that type 2 are trucks and type 1 are cars). Hence, we de-
note by α2 = nα, the injecting rate of vehicles type 2.
However, the process of the injection of the vehicles is as
follows.

If the first site is empty, a random number 0 ≤ R ≤ 1
is chosen. Then, if R ≤ α, a vehicle is injected. But its
nature depends on the value of α2; hence, if α2 ≤ R ≤ α,
then type 1 could enter the road; while, if R ≤ α2, type 2
can enter the road.

Note that 0 ≤ α2 ≤ α, in contrast with the first bound-
ary case where 0 ≤ α2 ≤ 1.
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Fig. 2. The variation of the global density ρ versus α1 for different values of α2 and β = 0.3 in the case of open boundaries
with two entries, the number accompanying each curve denotes the values of α2.

2.2 Periodic boundaries

The periodic boundary conditions for the FAEM with one
species of particle on a ring has been studied exactly by
Schadschneider and Schreckenberg [8,9]. Here we study
the FAEM with two types of vehicles for periodic bound-
aries with deterministic parallel dynamics. To illustrate
this situation let us consider a ring of N sites where C1

and C2 are the densities of sites occupied by the vehicles
type 1 and type 2 respectively. Hence, the global density
is given by C = C1 + C2. We assume that n = C2

C is the
concentration of the sites occupied by type 2. However,
C1 = (1 − n)C and C2 = nC. The main idea of studying
this case is to establish the fundamental diagram (I, C)
for several values of n. The mean value of the current in
the steady state is given by:

I =
1

NT

T∑
t=1

N∑
i=1

Ii.

3 Simulations and results

In our computational studies we have considered a chain
with N = 1000 sites. Simulation of the closed system be-
gins with particles randomly distributed around the ring
depending on their densities C1 and C2, whereas the open
system begins with a small number of vehicles randomly
distributed in the chain. The systems run for 20 000 MCS
to ensure that steady state is reached for the periodic case
and 40 000 MCS for open systems, at this moment data
including the current and density are collected. In order
to eliminate the fluctuations 25 initial configurations were
randomly chosen.

3.1 Open boundaries

3.1.1 The case of two entries

We recall that our aim in this case is to explore the phase
diagram (α1,α2) for a fixed values of the extracting rate β.
Figure 2 shows the profile of the global density ρ (which is
the density of all sites occupied by both types of vehicles)
versus α1 for β = 0.3 and various injecting rates α2. We
distinguish two regions.

The first region is when (α1 + α2) < β in which ρ
increases with α1, but this increase depends on the value
of α2. Indeed:

ρ(α1, α2 = 0) < ρ(α1, α2 = 0.1) < ρ(α1, α2 = 0.2).

On the other hand this region corresponds to the low den-
sity phase due to the low values of ρ. The second region
occurs when (α1 + α2) > β in which ρ become constant
(about 0.77) and does not depend on α1 and α2. This is
the high density phase.

At (α1+α2)c = β the global density ρ is discontinuous
and undergoes a jam between the two regions which is a
characteristic of the first order transition.

We can see that the system undergoes the usual first
order transition at α1 = β for α2 = 0.0 in agreement
with [22]. Also we remark that the density takes its higher
values when α2 > β even for α1 = 0.0, this means that
there is no low density phase in this case i.e. the system
prefers to be in the high density phase. In fact type 1 and
type 2 are not correlated at the beginning of the road due
to the conditions mentioned in Section 2.1.1, this explains
why the first order transition occurs at (α1 + α2)c = β.
For α2 > β this first order transition disappears due to
the greater proportion of type 2 in the road, indeed the
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Fig. 3. The phase diagram (α1, α2) for β = 0.3 in the case of open boundaries with two entries.

Fig. 4. The variation of the global density ρ as a function of α with α2 = 1/4α and for different values of β in the case of open
boundaries with one entry. The number accompanying each curve denotes the value of β.

number of type 2 which enter the chain is greater than
those which leave it leading to high density phase inde-
pendently of α1. Collecting all of these results we obtain
the phase diagram (α1, α2) for β = 0.3 in Figure 3 The
same results can be obtained for others values of β.

3.1.2 The case of one entry

This situation corresponds to the case when type 1 and
type 2 enter the chain in the same entry. We recall that
the FAEM with open boundary conditions and determin-
istic parallel dynamics exhibits a first order transition [22],
in which ρ is discontinuous and undergoes a gap between

the low and high density phases at αc = β. In our model
the gap decreases with increasing α and vanishes for its
higher values. Figure 4 shows the profile of the global
density ρ versus α for α2 = nα and various extracting
rates β, here n = 1/4 corresponding to the concentration
of type 2. We remark that for β = 0.0− 0.3 the first order
transition occurs at αc = β in agreement with [22] and
at αc < β when β = 0.4−0.7. For β = 0.8−0.9, there is
no phase transition. In fact, in this case about 1/4 of the
vehicles which enter the road could be type 2, and their
number becomes important as long as α increases, we re-
call that types 2 occupy two sites due to their length so,
it is clear in this situation that the global density in the
road becomes larger than the n = 0 case (i.e. the chain
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Fig. 5. The variation of the global density ρ as a function of α with α2 = 1/4α (circle dot) and α2 = 0.0α (square dot) for
β = 0.7 in the case of open boundaries with one entry.

Fig. 6. Phase diagram in the (α, β) plane for several values of n (concentration of type 2). Square and up triangle dots
correspond respectively to α2 = 0.5α and α2 = 0.25α where the lines of the first order transitions ended at the end points
(0.5,0.57) and (0.7,0.74). Circle dots recall the case α2 = 0.0α.

contains only type 1 vehicles). Such a comparison is illus-
trated in Figure 5, in which the n = 1/4 density gap is
smaller than the n = 0 one. The first order transition oc-
curs atαc < β(n = 1/4) instead of αc = β(n = 0.0). This
result is not observed when β = 0.1−0.3 (Fig. 4), because
the system reach the high density phase for small values
of α, which means that the probability for type 2 to enter
the road is small. Furthermore, for β = 0.8−0.9, the gap
vanishes (Fig. 4) and we have a continuous passage from
the low to the high density phase. In Figure 6 we display
the (α, β) phase diagram for three values of n. It is found
that the first order line transitions, separating the low and

high density phases in the case of n = 0.0 [22], is modi-
fied when n = 0.25, 0.5. Indeed, for n = 0.25 and n = 0.5
the line transitions terminate by end points above which
the first order transitions disappear. These end points are
located at (α = 0.7, β = 0.74) and (α = 0.5, β = 0.57) for
n = 0.25 and n = 0.5 respectively.

3.2 Periodic boundaries

The periodic boundary conditions for the FAEM with
one species of particle (Type 1) on a ring has been stud-
ied exactly by Schadschneider and Schreckenberg [8,9],
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Fig. 7. The fundamental diagram (I, C) for several values of n.
The symbols are obtained by simulation whereas the lines rep-
resent the analytical expression of the current.

where the relation between current and density is given
as follows:

I(C, P ) = 1/2
[
1 −

√
1 − 4qC(1 − C)

]

p is the braking probability and q = 1 − p is the hopping
rate.

An interesting feature of this expression is that the
current is invariant under the operation C −→ (1 − C)
which interchanges particles and holes. Therefore the fun-
damental diagram is symmetric about Cm = 1/2. This
symmetry is conserved for all p, but breaks down for a
fixed value of p and Vmax > 1 where the magnitude of Cm

decreases and the current increases with increasing Vmax.
In our model, introducing a small concentration of

type 2 leads to a breaking of the symmetry between
the holes and particles and the expression of the cur-
rent I(C, P ) mentioned above doesn’t work. Figure 7
shows the fundamental diagram (I, C) for different con-
centrations n of type 2, it is clear that the magnitude
of Cm increases and the current decreases when n in-
creases. We can say that so long as C is sufficiently small
the vehicles are too far apart to interact mutually, there-
fore the current increases with C but this increase is con-
trolled by the concentration n. Indeed type 2 takes lot of
time in passing the local detector due to its length in con-
trast to type 1, which reduces the current and shifts to the
right Cm. In the particular case n = 1, with a random se-
quential dynamic, Shaw et al. [19] found using analytical
and numerical calculations, that the current I isn’t sym-
metric about Cm = 1/2. Indeed, the maximal current is
lowered from 0.25 (n = 0, the chain contains only type 1
vehicles) to Im = 0.1715 (n = 1) and the density Cm is
shifted from 0.5 to Cm = 0.585. However, using numeri-
cal simulations with a deterministic parallel dynamics up-
date, we find that the maximal current is lowered from
0.5 (n = 0) [8,9] to Im = 0.332 (n = 1) and the den-

sity Cm is shifted from 0.5 to Cm = 0.669 as presented in
Figure 7.

We note that Figure 7 can be reproduced analytically
from the expression of the current cited above (for q =
1) by rescaling the density C and the current I. Indeed,
instead of C one then has C(1− n/2)/(1− nC/2) and for
the current I one gets I/(1−nC/2), hence the expression
of the current becomes I(C) = 1/2[1− nC/2− | 2C − 1−
nC/2 |].

4 Conclusion

We have studied the effect of a mixture of lengths of ve-
hicles on the traffic flow using numerical simulation with
a deterministic parallel update. For this purpose we have
defined two types of vehicles depending on their length,
type 1 the small cars (l = 1) which occupy one site, and
type 2 the long ones (l = 2) taking two sites. We have in-
vestigated both open and periodic boundaries. In the for-
mer case, two different cases are considered. In the case
of two entries, the global density ρ is discontinuous and
undergoes a jam between the low and high density phases
which is a characteristic of the first order transition at
(α1 + α2)c = β; and for α2 > β the system is in the high
density phase then no phase transitions is observed. In the
case of one entry, the concentration of type 2 plays a major
role, indeed the gap between low and high density phases
decreases when increasing α and vanishes for higher val-
ues. Furthermore the phase diagram exhibits an end point
above which the first order transitions disappear.

In the periodic boundary case, the presence of type 2
vehicles leads to a breaking of the symmetry holes-
particles, then the magnitude of cm increases, shifting to
high density and the maximal current decreases.

This work was financially supported by the Protars II
n◦ P11/02.
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